On minimaxity and admissibility of hierarchical Bayes estimators
نویسندگان
چکیده
منابع مشابه
Admissibility and minimaxity of generalized Bayes estimators for spherically symmetric family
Abstract: We give a sufficient condition for admissibility of generalized Bayes estimators of the location vector of spherically symmetric distribution under squared error loss. Compared to the known results for the multivariate normal case, our sufficient condition is very tight and is close to being a necessary condition. In particular we establish the admissibility of generalized Bayes estim...
متن کاملOn the Bayesness, minimaxity and admissibility of point estimators of allelic frequencies.
In this paper, decision theory was used to derive Bayes and minimax decision rules to estimate allelic frequencies and to explore their admissibility. Decision rules with uniformly smallest risk usually do not exist and one approach to solve this problem is to use the Bayes principle and the minimax principle to find decision rules satisfying some general optimality criterion based on their ris...
متن کاملMultivariate limited translation hierarchical Bayes estimators
Based on the notion of predictive influence functions, the paper develops multivariate limited translation hierarchical Bayes estimators of the normal mean vector which serve as a compromise between the hierarchical Bayes and maximum likelihood estimators. The paper demonstrates the superiority of the limited translation estimators over the usual hierarchical Bayes estimators in terms of the fr...
متن کاملRate Minimaxity of the Lasso and Dantzig Estimators
We consider the estimation of regression coefficients in a high-dimensional linear model. A lower bound of the minimax `q risk is provided for regression coefficients in `r balls, along with a minimax lower bound for the tail of the `q loss. Under certain conditions on the design matrix and penalty level, we prove that these minimax convergence rates are attained by both the Lasso and Dantzig e...
متن کاملUnbiasedness and Bayes Estimators
A simple geometric representation of Bayes and unbiased rules for squared error loss is provided. Some orthogonality relationships between them and the functions they are estimating are proved. Bayes estimators are shown to be behave asymptotically like unbiased estimators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2007
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2006.08.009